CHECKLIST REQUIREMENTS FOR EXPEDITED PERMITTING OF SMALL RESIDENTIAL ROOFTOP SOLAR ENERGY SYSTEMS

The following informational pages are for the expedited permitting process for both central inverter and micro-inverter photovoltaic systems mounted on the roof of a one or two family dwelling or accessory building with a rating of 10kW or less.

You are allowed to provide the required information in a different format than the informational pages as long as the 1st two informational pages are filled out for the central inverter and the one page for the micro-inverter systems, (these are recognized by the pages with city letterhead).

If any of the system does not meet the criteria of the expedited permitting process then the standard permitting process will be in place.
GENERAL REQUIREMENTS

A. System size is 10 kW AC CEC rating or less
   ☐ Y ☐ N
B. The solar array is roof-mounted on one- or two-family dwelling or accessory structure
   ☐ Y ☐ N
C. The solar panel/module arrays will not exceed the maximum legal building height
   ☐ Y ☐ N
D. Solar system is utility interactive and without battery storage
   ☐ Y ☐ N
E. Permit application is completed and attached
   ☐ Y ☐ N

ELECTRICAL REQUIREMENTS

A. No more than four photovoltaic module strings are connected to each Maximum Power Point Tracking (MPPT) input where source circuit fusing is included in the inverter
   ☐ Y ☐ N
   1) No more than two strings per MPPT input where source circuit fusing is not included
   ☐ Y ☐ N
   2) Fuses (if needed) are rated to the series fuse rating of the PV module
   ☐ Y ☐ N
   3) No more than one noninverter-integrated DC combiner is utilized per inverter
   ☐ Y ☐ N
B. For central inverter systems: No more than two inverters are utilized
   ☐ Y ☐ N
C. The PV system is interconnected to a single-phase AC service panel of nominal
   120/220 Vac with a bus bar rating of 225 A or less
   ☐ Y ☐ N
D. The PV system is connected to the load side of the utility distribution equipment
   ☐ Y ☐ N
E. A Solar PV Standard Plan and supporting documentation is completed and attached
   ☐ Y ☐ N

STRUCTURAL REQUIREMENTS

A. A completed Structural Criteria and supporting documentation is attached (if required)
   ☐ Y ☐ N

FIRE SAFETY REQUIREMENTS

A. Clear access pathways provided
   ☐ Y ☐ N
B. Fire classification solar system is provided
   ☐ Y ☐ N
C. All required markings and labels are provided
   ☐ Y ☐ N
D. A diagram of the roof layout of all panels, modules, clear access pathways and approximate locations of electrical disconnecting means and roof access points is completed and attached
   ☐ Y ☐ N

Notes:
1. These criteria are intended for expedited solar permitting process.
2. If any items are checked NO, revise design to fit within Eligibility Checklist, otherwise permit application may go through standard process.
SCOPE: Use this plan ONLY for utility-interactive central/string inverter systems not exceeding a system 4C inverter output rating of 1kW on the roof of a one- or two-family dwelling or accessory structure. The photovoltaic system must interconnect to the load side of a single-phase AC service panel of nominal 120/240Vac with a bus bar rating of 225A or less. This plan is not intended for bipolar systems, hybrid systems or systems that utilize storage batteries, charge controllers, trackers, more than two inverters or more than one DC combiner (noninverter-integrated) per inverter. Systems must be in compliance with current California Building Standards Codes and local amendments of the authority having jurisdiction (AHJ). Other Articles of the California Electrical Code (CEC) shall apply as specified in 690.3.

MANUFACTURER'S SPECIFICATION SHEETS MUST BE PROVIDED for proposed inverter, modules, combiner/junction boxes and racking systems. Installation instructions for bonding and grounding equipment shall be provided, and local AHJs may require additional details. Listed and labeled equipment shall be installed and used in accordance with any instructions included in the listing or labeling (CEC 110.3). Equipment intended for use with PV system shall be identified and listed for the application (CEC 690.4(D)).

Job Address: ____________________________ Permit #: ____________________________

Contractor/Engineer Name: ____________________________ License # and Class: ____________________________

Signature: ____________________________ Date: ____________________________ Phone Number: ____________________________

Total # of Inverters installed: ________ (If more than one inverter, complete and attach the “Supplemental Calculation Sheets” and the “Load Center Calculations” if a new load center is to be used.)

| Inverter 1 AC Output Power Rating: ________ Watts |
| Inverter 2 AC Output Power Rating (if applicable): ________ Watts |
| Combined Inverter Output Power Rating: ________ ≤ 10,000 Watts |

Location Ambient Temperatures (Check box next to which lowest expected temperature is used):

1) ☐ Lowest expected ambient temperature for the location (T<sub>a</sub>) = Between -1° to -5° C
2) ☐ Lowest expected ambient temperature for the location (T<sub>a</sub>) = Between -6° to -10° C

Average ambient high temperature (T<sub>h</sub>) = 47° C

Note: For a lower T<sub>a</sub> or a higher T<sub>h</sub>, use the Comprehensive Standard Plan

DC Information:

| Module Manufacturer: ____________________________ | Model: ____________________________ |
| 2) Module V<sub>oc</sub> (from module nameplate): ________ Volts | 3) Module I<sub>oc</sub> (from module nameplate): ________ Amps |
| 4) Module DC output power under standard test conditions (STC) = ________ Watts (STC) |
5) DC Module Layout

<table>
<thead>
<tr>
<th>Identify each source circuit (string) for inverter 1 shown on the roof plan with a Tag (e.g. A,B,C,...)</th>
<th>Number of modules per source circuit for inverter 1</th>
<th>Identify, by tag, which source circuits on the roof are to be paralleled (if none, put N/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Combiner 1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Combiner 2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total number of source circuits for inverter 1:</td>
</tr>
</tbody>
</table>

6) Are DC/DC Converters used? □ Yes □ No

| DC/DC Converter Model #: | DC/DC Converter Max DC Input Voltage: │ Volts |
|--------------------------|---------------------------------------|-------|
|                          | DC/DC Converter Max DC Output Current:  | Volts |
|                          | DC/DC Converter Max DC Output Power:   | Watts |

If No, skip to Step 7. If Yes enter info below.

7) Maximum System DC Voltage — Use A1 or A2 for systems without DC/DC converters, and B1 or B2 with DC/DC Converters.

| Module V_in (STEP 2) = # x # in series (STEP 3) x 1.12 (if -1 ≤ T ≤ -5°C, STEP 1) = _ _ _ _ V |
|--------------------------------------------------|---------------------------------------------------------------|

<table>
<thead>
<tr>
<th>Max. Rated Module V_in (*1.12) (Volts)</th>
<th>29.24</th>
<th>30.96</th>
<th>32.89</th>
<th>35.09</th>
<th>37.59</th>
<th>40.49</th>
<th>43.86</th>
<th>47.85</th>
<th>52.63</th>
<th>58.48</th>
<th>65.79</th>
<th>75.19</th>
<th>87.72</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29.76</td>
<td>31.51</td>
<td>33.48</td>
<td>35.71</td>
<td>38.27</td>
<td>41.21</td>
<td>44.64</td>
<td>48.70</td>
<td>53.57</td>
<td>59.52</td>
<td>66.96</td>
<td>76.53</td>
<td>89.29</td>
</tr>
<tr>
<td>Max. Rated Module V_in (*1.14) (Volts)</td>
<td>29.76</td>
<td>31.51</td>
<td>33.48</td>
<td>35.71</td>
<td>38.27</td>
<td>41.21</td>
<td>44.64</td>
<td>48.70</td>
<td>53.57</td>
<td>59.52</td>
<td>66.96</td>
<td>76.53</td>
<td>89.29</td>
</tr>
<tr>
<td>Max # of Modules for 600 Vdc</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Use for DC/DC converters. The value calculated below must be less than DC/DC converter max input voltage (STEP 6).

| Module V_in (STEP 2) = # x # of modules per converter (STEP 6) x 1.12 (if -6 ≤ T ≤ -10°C, STEP 1) = _ _ _ _ V |
|--------------------------------------------------|---------------------------------------------------------------|

<table>
<thead>
<tr>
<th>Max. Rated Module V_in (*1.12) (Volts)</th>
<th>30.4</th>
<th>33.0</th>
<th>35.7</th>
<th>38.4</th>
<th>38.4</th>
<th>41.1</th>
<th>43.0</th>
<th>46.4</th>
<th>49.1</th>
<th>51.8</th>
<th>54.5</th>
<th>57.1</th>
<th>59.8</th>
<th>62.5</th>
<th>65.2</th>
<th>67.9</th>
<th>70.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29.8</td>
<td>32.5</td>
<td>35.1</td>
<td>37.7</td>
<td>40.4</td>
<td>43.0</td>
<td>45.6</td>
<td>48.2</td>
<td>50.9</td>
<td>53.5</td>
<td>56.1</td>
<td>58.8</td>
<td>61.4</td>
<td>64.0</td>
<td>66.7</td>
<td>69.3</td>
<td></td>
</tr>
<tr>
<td>Max. Rated Module V_in (*1.14) (Volts)</td>
<td>29.8</td>
<td>32.5</td>
<td>35.1</td>
<td>37.7</td>
<td>40.4</td>
<td>43.0</td>
<td>45.6</td>
<td>48.2</td>
<td>50.9</td>
<td>53.5</td>
<td>56.1</td>
<td>58.8</td>
<td>61.4</td>
<td>64.0</td>
<td>66.7</td>
<td>69.3</td>
<td></td>
</tr>
<tr>
<td>DC/DC Converter Max DC Input (Step #6) (Volts)</td>
<td>34</td>
<td>37</td>
<td>40</td>
<td>43</td>
<td>46</td>
<td>49</td>
<td>52</td>
<td>55</td>
<td>58</td>
<td>61</td>
<td>64</td>
<td>67</td>
<td>70</td>
<td>73</td>
<td>76</td>
<td>79</td>
<td></td>
</tr>
</tbody>
</table>

8) Maximum System DC Voltage from DC/DC Converters to Inverter — Only required if Yes in Step 6

Maximum System DC Voltage = _ _ _ _ Volts

9) Maximum Source Circuit Current

Is Module I_SC below 9.6 Amps (Step 3)? □ Yes □ No (If No, use Comprehensive Standard Plan)
10) Sizing Source Circuit Conductors
Source Circuit Conductor Size = Min. #10 AWG copper conductor, 90° C wet (USE-2, PV Wire, XHHW-2, THWN-2, RHW-2)
For up to 8 conductors in roof-mounted conduit exposed to sunlight at least ½" from the roof covering (CEC 310)
Note: For over 8 conductors in the conduit or mounting height of lower than ½" from the roof, use Comprehensive Plan.

11) Are PV source circuits combined prior to the inverter?  □ Yes  □ No
If No, use Single Line Diagram 1 and proceed to Step 13.
If Yes, use Single Line Diagram 2 with Single Line Diagram 4 and proceed to Step 12.
Is source circuit OCPD required?  □ Yes  □ No
Source circuit OCPD size (if needed): 15 Amps

12) Sizing PV Output Circuit Conductors — If a combiner box will NOT be used (Step 11),
Output Circuit Conductor Size = Min. #6 AWG copper conductor

13) Inverter DC Disconnect
Does the inverter have an integrated DC disconnect?  □ Yes  □ No  If Yes, proceed to step 14.
If No, the external DC disconnect to be installed is rated for _____ Amps (DC) and _____ Volts (DC)

14) Inverter Information
Manufacturer: __________________________  Model: __________________________
Max. Continuous AC Output Current Rating: _____ Amps
Integrated DC Arc-Fault Circuit Protection?  □ Yes  □ No  (If No is selected, Comprehensive Standard Plan)
Grounded or Ungrounded System?  □ Grounded  □ Ungrounded

AC Information:

15) Sizing Inverter Output Circuit Conductors and OCPD
Inverter Output OCPD rating = _____ Amps (Table 3)
Inverter Output Circuit Conductor Size = _____ AWG (Table 3)

<table>
<thead>
<tr>
<th>Table 3. Minimum Inverter Output OCPD and Circuit Conductor Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Continuous Output Current Rating (Amps) (Step 14)</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>Minimum OCPD Size (Amps)</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>Minimum Conductor Size (AWG, 75° C, Copper)</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>
16) Point of Connection to Utility

Only load side connections are permitted with this plan. Otherwise, use Comprehensive Standard Plan.

Is the PV OCPD positioned at the opposite end from input feeder location or main OCPD location? □ Yes □ No

If Yes, circle the Max Combined PV System OCPD(s) at 120% value as determined from Step 15 (or Step S20), bus bar Rating, and Main OCPD as shown in Table 4.

If No, circle the Max Combined PV System OCPD(s) at 100% value as determined from Step 15 (or Step S20), bus bar Rating, and Main OCPD as shown in Table 4.

Per 705.12(D)(2): [Inverter output OCPD size [Step #15 or S20] + Main OCPD Size] < [bus size x (100% or 120%)]

| Table 4, Maximum Combined Supply OCPDs Based on Bus Bar Rating (Amps) per NEC 705.12(D)(2) |
|---------------------------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Bus Bar Rating                  | 100             | 125            | 125            | 200            | 200            | 200            | 225            | 225            | 225            |
| Main OCPD                       | 100             | 100            | 125            | 150            | 175            | 200            | 175            | 200            | 225            |
| Max Combined PV System OCPD(s)  |                 |                |                |                |                |                |                |                |
| at 120% of Bus Bar Rating       | 20              | 50             | 25             | 60*            | 60*            | 40             | 60*            | 60*            | 45             |
| Max Combined PV System OCPD(s)  |                 |                |                |                |                |                |                |                |
| at 100% Bus Bar Rating          | 0               | 25             | 0              | 50             | 25             | 0              | 50             | 25             | 0              |

*This value has been lowered to 60 A from the calculated value to reflect 10 kW AC size maximum.

Reduction of the main breaker is not permitted with this plan. Otherwise, use Comprehensive Standard Plan.

17 & 18 & 19) Labels and Grounding and Bonding

This content is covered by the labels on the next page and the Single Line Diagram(s). For background information, refer to the Comprehensive Standard Plan.
Solar PV Standard Plan — Simplified
Central/String Inverter Systems for One- and Two-Family Dwellings

Markings

CEC Articles 690 and 705 and CRC Section R331 require the following labels or markings be installed at these components of the photovoltaic system:

- **WARNING**
  INVERTER OUTPUT CONNECTION;
  DO NOT RELOCATE THIS
  OVERCURRENT DEVICE

  CEC 705.12(D)(7)
  [Not required if panelboard is rated not
   less than sum of ampere ratings of all
   overcurrent devices supplying it]

- **WARNING**
  ELECTRIC SHOCK HAZARD. THE DC
  CONDUCTORS OF THIS PHOTOVOLTAIC
  SYSTEM ARE UNGROUNDED AND MAY
  BE ENERGIZED

  CEC 690.35(F)
  [Only required for ungrounded systems]

- **WARNING**
  PHOTOVOLTAIC
  POWER SOURCE

  CRC R331.2 and CFC 605.11.1
  [Marked on junction/combiner boxes
   and conduit every 10']

- **WARNING**
  DUAL POWER SOURCES
  SECOND SOURCE IS PHOTOVOLTAIC SYSTEM
  RATED AC OUTPUT CURRENT - ___ AMPS
  AC NORMAL OPERATING VOLTAGE ___ VOLTS

  CEC 690.54 & CEC 705.12(D)(4)

- **WARNING**
  PV SYSTEM AC DISCONNECT
  RATED AC OUTPUT CURRENT - ___ AMPS
  AC NORMAL OPERATING VOLTAGE ___ VOLTS

  CEC 690.54

- **WARNING**
  ELECTRIC SHOCK HAZARD
  IF A GROUND FAULT IS INDICATED,
  NORMALLY GROUNDED CONDUCTORS
  MAY BE UNGROUNDED AND ENERGIZED

  CEC 690.5(C)
  [Normally already present on listed inverters]

- **WARNING**
  PHOTOVOLTAIC
  POWER SOURCE

  CRC R331.2 and CFC 605.11.1
  [Marked on junction/combiner boxes
   and conduit every 10']

- **WARNING**
  ELECTRIC SHOCK HAZARD
  DO NOT TOUCH TERMINALS
  TERMINALS ON BOTH LINE AND LOAD
  SIDES MAY BE ENERGIZED IN THE
  OPEN POSITION

  CEC 690.17

- **WARNING**
  PHOTOVOLTAIC
  POWER SOURCE

  CRC R331.2 and CFC 605.11.1
  [Marked on junction/combiner boxes
   and conduit every 10']

- **PV SYSTEM DC DISCONNECT**
  RATED MAX POWER-POINT CURRENT- ___ ADC
  RATED MAX POWER-POINT VOLTAGE- ___ VDC
  SHORT CIRCUIT CURRENT- ___ ADC
  MAXIMUM SYSTEM VOLTAGE- ___ VDC

  CEC 690.53

Code Abbreviations:
California Electrical Code (CEC)
California Residential Code (CRC)
California Fire Code (CFC)

Informational note: ANSI Z535.4 provides guidelines for the design of safety signs and labels for application to products. A phenolic plaque with contrasting colors between the text and background would meet the intent of the code for permanency. No type size is specified, but 20 point (3/8") should be considered the minimum.

CEC 705.12 requires a permanent plaque or directory denoting all electric power sources on or in the premises.
Solar PV Standard Plan — Simplified
Central/String Inverter Systems for One- and Two-Family Dwellings

**TAG DESCRIPTION**

1. SOLAR PV MODULE / STRING
2. DC/DC CONVERTERS INSTALLED? YES / NO (IF YES, STEPS 6 & 8 REQUIRED)
3. SOURCE CIRCUIT JUNCTION BOX INSTALLED? YES / NO
4. SEPARATE DC DISCONNECT INSTALLED? YES / NO
5. INTERNAL INVERTER DC DISCONNECT? YES / NO
6. CENTRAL INVERTER
7. LOAD CENTER INSTALLED? YES / NO
8. PV PRODUCTION METER INSTALLED? YES / NO
9. SEPARATE AC DISCONNECT INSTALLED? YES / NO
10. CONNECT TO INVERTER #2 (USE LINE DIAGRAM 2)

**SINGLE-LINE DIAGRAM #1** — NO STRINGS COMBINED PRIOR TO INVERTER

CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:
- GROUNDED (INCLUDE GEC)
- UNGROUNDED

FOR UNGROUNDED SYSTEMS:
- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

* Consult with your local AHJ and/or Utility

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION AND CONDUCTOR TYPE</th>
<th>CONDUCTOR SIZE</th>
<th>NUMBER OF CONDUCTORS</th>
<th>CONDUIT/CABLE TYPE</th>
<th>CONDUIT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>USE-2 ▲ OR PV-WIRE ▲</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>GEC/GEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GEC/GEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>GEC/GEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTER "N/A" WHERE SUITABLE FOR WHEN NOT USING CONDUIT OR CABLE AS PERMITTED BY CODE
Solar PV Standard Plan — Simplified
Central/String Inverter Systems for One- and Two-Family Dwellings

SINGLE-LINE DIAGRAM #2 — COMBINING STRINGS PRIOR TO INVERTER

CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:
- GROUNDED (INCLUDE EGC)
- UNGROUNDED

FOR UNGROUNDED SYSTEMS:
- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 250.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

* Consult with your local AHU and /or Utility

COMBINER CONDUCTOR/CONDUCT SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION AND CONDUCTOR TYPE</th>
<th>CONDUCTOR SIZE</th>
<th>NUMBER OF CONDUCTORS</th>
<th>CONDUCT/CABLE TYPE</th>
<th>CONDUIT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>USE-212 OR PV-WIRE 12</td>
<td>EGC/EGC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>EGC/EGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>EGC/EGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>EGC/EGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>EGC/EGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NON-COMBINED STRINGS CONDUCTOR/CONDUCT SCHEDULE (IF APPLICABLE)

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION AND CONDUCTOR TYPE</th>
<th>CONDUCTOR SIZE</th>
<th>NUMBER OF CONDUCTORS</th>
<th>CONDUCT/CABLE TYPE</th>
<th>CONDUIT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>USE-212 OR PV-WIRE 12</td>
<td>EGC/EGC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>EGC/EGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTER "N/A" WHERE SUITABLE FOR WHEN NOT USING CONDUCT OR CABLE AS PERMITTED BY CODE

IF DC/DC CONVERTERS ARE USED, THEY ARE RUN IN SERIES (FIXED SOURCE CIRCUIT VOLTAGE DC/DC CONVERTER)
Solar PV Standard Plan — Simplified  
Central/String Inverter Systems for One- and Two-Family Dwellings  
Supplemental Calculation Sheets for Inverter #2  
(Only include if second inverter is used)

**DC Information:**

<table>
<thead>
<tr>
<th>Module Manufacturer:</th>
<th>Model:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S2) Module \( V_{oc} \) (from module nameplate): _____ Volts  
S3) Module \( I_{sc} \) (from module nameplate): _____ Amps

S4) Module DC output power under standard test conditions (STC) = _____ Watts (STC)

**S5) DC Module Layout**

<table>
<thead>
<tr>
<th>Identify each source circuit (string) for inverter 1 shown on the roof plan with a Tag (e.g. A, B, C, ...)</th>
<th>Number of modules per source circuit for inverter 1</th>
<th>Identify, by tag, which source circuits on the roof are to be paralleled (if none, put N/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Combiner 1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Combiner 2:</td>
</tr>
</tbody>
</table>

Total number of source circuits for inverter 1:

S6) Are DC/DC Converters used?  □ Yes  □ No  If No, skip to Step S7. If Yes, enter info below.

<table>
<thead>
<tr>
<th>DC/DC Converter Model #:</th>
<th>DC/DC Converter Max DC Input Voltage:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volts</td>
</tr>
</tbody>
</table>

Max DC Output Current: _____ Amps  
Max DC Output Current: _____ Volts  
Max # of DC/DC Converters in an Input Circuit: _____  
DC/DC Converter Max DC Input Power: _____ Watts
S7) Maximum System DC Voltage — Use A1 or A2 for systems without DC/DC converters, and B1 or B2 with DC/DC Converters.

- A1. Module $V_{oc}$ (STEP S2) = \[\text{\# in series (STEP S5)} \times 1.12 \text{ (if } -1 < T_i < -5^\circ\text{C, STEP S1)}\] \[= \text{_____ V}\]
- A2. Module $V_{oc}$ (STEP S2) = \[\text{\# in series (STEP S5)} \times 1.14 \text{ (if } -6 < T_i < -10^\circ\text{C, STEP S1)}\] \[= \text{_____ V}\]

<table>
<thead>
<tr>
<th>Table 1. Maximum Number of PV Modules in Series Based on Module Rated $V_{oc}$ for 600 Vdc Rated Equipment (CEC 690-7)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Max. Rated Module $V_{oc}$ (1.12) (Volts)</strong></td>
</tr>
<tr>
<td><strong>Max. Rated Module $V_{oc}$ (1.14) (Volts)</strong></td>
</tr>
<tr>
<td><strong>Max # of Modules for 600 Vdc</strong></td>
</tr>
</tbody>
</table>

Use for DC/DC converters. The value calculated below must be less than DC/DC converter max DC input voltage (STEP S6).

- B1. Module $V_{oc}$ (STEP S2) = \[\text{\# of modules per converter (STEP S6)} \times 1.12 \text{ (if } -1 < T_i < -5^\circ\text{C, STEP S1)}\] \[= \text{_____ V}\]
- B2. Module $V_{oc}$ (STEP S2) = \[\text{\# of modules per converter (STEP S6)} \times 1.14 \text{ (if } -6 < T_i < -10^\circ\text{C, STEP S1)}\] \[= \text{_____ V}\]

<table>
<thead>
<tr>
<th>Table 2. Largest Module $V_{oc}$ for Single-Module DC/DC Converter Configurations (with 80 V AFC Cap) (CEC 690-7 and 690-11)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Max. Rated Module $V_{oc}$ (1.12) (Volts)</strong></td>
</tr>
<tr>
<td><strong>Max. Rated Module $V_{oc}$ (1.14) (Volts)</strong></td>
</tr>
<tr>
<td><strong>DC/DC Converter Max DC Input (Step 6) (Volts)</strong></td>
</tr>
</tbody>
</table>

S8) Maximum System DC Voltage from DC/DC Converters to Inverter — Only required if Yes in Step S6
Maximum System DC Voltage = \[\text{_____ Volts}\]

S9) Maximum Source Circuit Current
Is Module $I_{sc}$ below 9.6 Amps (Step S3)? □ Yes □ No (If No, use Comprehensive Standard Plan)

S10) Sizing Source Circuit Conductors
Source Circuit Conductor Size = Min. #10 AWG copper conductor, 90° C wet (USE-2, PV Wire, XHHW-2, THWN-2, RHW-2)
For up to 8 conductors in roof-mounted conduit exposed to sunlight at least ½" from the roof covering (CEC 310)
Note: For over 8 conductors in the conduit or mounting height of lower than ½" from the roof, use Comprehensive Plan.

S11) Are PV source circuits combined prior to the inverter? □ Yes □ No
If No, use Single Line Diagram 1 and proceed to Step S13.
If Yes, use Single Line Diagram 2 with Single Line Diagram 4 and proceed to Step S12.
Is source circuit OCPD required? □ Yes □ No
Source circuit OCPD size (if needed): 15 Amps

S12) Sizing PV Output Circuit Conductors — If a combiner box WILL NOT be used (Step S11),
Output Circuit Conductor Size = Min. #6 AWG copper conductor

S13) Inverter DC Disconnect
Does the inverter have an integrated DC disconnect? □ Yes □ No
If Yes, proceed to Step S14.
If No, the external DC disconnect to be installed is rated for _____ Amps (DC) and _____ Volts (DC)
S14) Inverter Information
Manufacturer: ____________________________  Model: ____________________________
Max. Continuous AC Output Current Rating: _______ Amps
Integrated DC Arc-Fault Circuit Protection?  ☐ Yes  ☐ No (If No is selected, Comprehensive Standard Plan)
Grounded or Ungrounded System?  ☐ Grounded  ☐ Ungrounded

AC Information:

S15) Sizing Inverter Output Circuit Conductors and OCPD
Inverter Output OCPD rating = _______ Amps (Table 3)
Inverter Output Circuit Conductor Size = _______ AWG (Table 3)

<table>
<thead>
<tr>
<th>Inverter Continuous Output Current Rating (Amps) (Step 14)</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>28</th>
<th>32</th>
<th>36</th>
<th>40</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum OCPD Size (Amps)</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Minimum Conductor Size (AWG, 75° C, Copper)</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Load Center Calculations
(Omit if a load center will not be installed for PV OCPDs)

S20) Load Center Output:
Calculate the sum of the maximum AC outputs from each inverter.
Inverter #1 Max Continuous AC Output Current Rating [STEP S14] _____ × 1.25 = _____ Amps
Inverter #2 Max Continuous AC Output Current Rating [STEP S14] _____ × 1.25 = _____ Amps
Total inverter currents connected to load center (sum of above) = _____ Amps

Conductor Size: _____ AWG
Overcurrent Protection Device: _____ Amps
Load center bus bar rating: _____ Amps
The sum of the ampere ratings of overcurrent devices in circuits supplying power to a bus bar or conductor shall not exceed 120 percent of the rating of the bus bar or conductor.
Solar PV Standard Plan — Simplified
Central/String Inverter Systems for One- and Two-Family Dwellings

SINGLE-LINE DIAGRAM #3 – ADDITIONAL INVERTER FOR DIAGRAM #1

INVERTER # 2

CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:

☐ GROUNDED (INCLUDE GEC)
☐ UNGROUNDED

FOR UNGROUNDED SYSTEMS:
- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C), WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

CONDUCTOR/CONDUIT SCHEDULE

TAG DESCRIPTION AND CONDUCTOR TYPE CONDUCTOR SIZE NUMBER OF CONDUCTORS CONDUIT/CABLE TYPE CONDUIT SIZE

A USE-2 OR PV-WIRE
- EGC/GEC

B EGC/GEC

C EGC/GEC

ENTER “N/A” WHERE SUITABLE FOR WHEN NOT USING CONDUIT OR CABLE AS PERMITTED BY CODE

IF DC/DC CONVERTERS ARE USED, CHECK THE BOX BELOW THE CORRESPONDING CONFIGURATION

PARALLEL DC/DC CONVERTERS ON ONE SOURCE CIRCUIT (FIXED UNIT VOLTAGE DC/DC CONVERTERS)

DC/DC CONVERTERS ARE ALL RUN IN SERIES (FIXED SOURCE CIRCUIT VOLTAGE DC/DC CONVERTERS)

* Consult with your local AHJ and/or Utility
Solar PV Standard Plan — Simplified
Central/String Inverter Systems for One- and Two-Family Dwellings

SINGLE-LINE DIAGRAM #4 – ADDITIONAL INVERTER FOR DIAGRAM #2

INVERTER # 2

CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:
- GROUNDED (INCLUDE GEC)
- UNGROUNDED

FOR UNGROUNDED SYSTEMS:
- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

* Consult with your local AHJ and/or Utility
Items required: roof layout of all panels, modules, clear access pathways and approximate locations of electrical disconnecting means and roof access points.
SCOPE: Use this plan ONLY for systems using utility-interactive Microinverters or AC Modules (ACM) not exceeding a combined system AC inverter output rating of 10 kW, with a maximum of 3 branch circuits, one PV module per inverter and with PV module ISC maximum of 10-A DC, installed on a roof of a one- or two-family dwelling or accessory structure. The photovoltaic system must interconnect to a single-phase AC service panel of 120/240 Vac with service panel bus bar rating of 225 A or less. This plan is not intended for bipolar systems, hybrid systems or systems that utilize storage batteries, charge controllers or trackers. Systems must be in compliance with current California Building Standards Codes and local amendments of the authority having jurisdiction (AHJ). Other articles of the California Electrical Code (CEC) shall apply as specified in section 690.3.

MANUFACTURER'S SPECIFICATION SHEETS MUST BE PROVIDED for proposed inverters, modules, combiner/junction boxes and racking systems. Installation instructions for bonding and grounding equipment shall be provided and local AHJs may require additional details. Listed and labeled equipment shall be installed and used in accordance with any instructions included in the listing or labeling (CEC 110.3). Equipment intended for use with PV system shall be identified and listed for the application CEC 690.4(D).

Applicant and Site Information
Job Address: ___________________________ Permit #: ___________________________
Contractor/Engineer Name: ___________________________ License # and Class: ___________________________
Signature: ___________________________ Date: ___________________________ Phone Number: ___________________________

1. General Requirements and System Information
- Microinverter
  - Number of PV modules installed: __________
  - Number of Microinverters installed: __________
- AC Module (ACM)
  - Number of ACMs installed: __________
  - Note: Listed Alternating-Current Module (ACM) is defined in CEC 690.2 and installed per CEC 690.6

1.1 Number of Branch Circuits, 1, 2 or 3: __________
1.2 Actual number of Microinverters or ACMs per branch circuit: 1 __________ 2 __________ 3 __________
1.3 Total AC system power rating = (Total Number of Microinverters or ACMs) x (AC inverter power output) = __________ Watts
1.4 Lowest expected ambient temperature for this plan in Table 1: For -1° to -5° C use 1.12 or for -6° to -10° C use 1.14 correction factors.
1.5 Average ambient high temperature for this plan: = +47° C
   Note: For lower expected ambient or higher average ambient high temperatures, use Comprehensive Standard Plan.

2. Microinverter or ACM Information and Ratings
Microinverters with ungrounded DC inputs shall be installed in accordance with CEC 690.35.

Model: ___________________________
2.1 Rated (continuous) AC output power: __________ Watts
2.2 Nominal AC voltage rating: ________ Volts

2.3 Rated (continuous) AC output current: ________ Amps

If installing ACMs, skip [STEPS 2.4]

2.4 Maximum DC input voltage rating: ________ Volts (limited to 79 V, otherwise use the Comprehensive Standard Plan)

2.5 Maximum AC output overcurrent protection device (OCPD) ________ Amps

2.6 Maximum number of microinverters or ACMs per branch circuit: ________

3. PV Module Information

(If installing ACMs, skip to [STEP 4])

PV Module Manufacturer: ____________________________________________

Model: __________________________________________________________

Module DC output power under standard test conditions (STC) = ________ Watts

3.1 Module V_{OC} at STC (from module nameplate): ________ Volts

3.2 Module I_{SC} at STC (from module nameplate): ________ Amps

3.3 Adjusted PV Module DC voltage at minimum temperature = [Table 1] ________ [cannot exceed Step 2.4]

<table>
<thead>
<tr>
<th>Microinverter Max. DC Input [STEP 2.4] (Volts)</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>43</th>
<th>46</th>
<th>49</th>
<th>52</th>
<th>55</th>
<th>58</th>
<th>61</th>
<th>64</th>
<th>67</th>
<th>70</th>
<th>73</th>
<th>76</th>
<th>79</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Module VOC @ STC, 1.12 (-1° to -5° C) Correction Factor (Volts)</td>
<td>30.4</td>
<td>33.0</td>
<td>35.7</td>
<td>38.4</td>
<td>41.1</td>
<td>43.8</td>
<td>46.4</td>
<td>49.1</td>
<td>51.8</td>
<td>54.5</td>
<td>57.1</td>
<td>59.8</td>
<td>62.5</td>
<td>65.2</td>
<td>67.9</td>
<td>70.5</td>
</tr>
<tr>
<td>Max. Module VOC @ STC, 1.14 (-6° to -10° C) Correction Factor (Volts)</td>
<td>29.8</td>
<td>32.5</td>
<td>35.1</td>
<td>37.7</td>
<td>40.4</td>
<td>43.0</td>
<td>45.6</td>
<td>48.2</td>
<td>50.9</td>
<td>53.5</td>
<td>56.1</td>
<td>58.8</td>
<td>61.4</td>
<td>64.0</td>
<td>66.7</td>
<td>69.3</td>
</tr>
</tbody>
</table>

4. Branch Circuit Output Information

Fill in [Table 3] to describe the branch circuit inverter output conductor and OCPD size. Use [Table 2] for determining the OCPD and Minimum Conductor size.

<table>
<thead>
<tr>
<th>Circuit Current (Amps)</th>
<th>Circuit Power (Watts)</th>
<th>OCPD (Amps)</th>
<th>Minimum Conductor Size (AWG)</th>
<th>Minimum Metal Conduit Size for 6 Current Carrying Conductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2880</td>
<td>15</td>
<td>12</td>
<td>0.10</td>
</tr>
<tr>
<td>16</td>
<td>3840</td>
<td>20</td>
<td>10</td>
<td>0.10</td>
</tr>
<tr>
<td>20</td>
<td>4800</td>
<td>25</td>
<td>8</td>
<td>1.00</td>
</tr>
<tr>
<td>24</td>
<td>5760</td>
<td>30</td>
<td>8</td>
<td>1.00</td>
</tr>
</tbody>
</table>

*CEC 690.8 and 210.19 (A)(11) factored in Table 2, conductors are copper, insulation must be 90°C wet-rated. Table 2 values are based on maximum ambient temperature of 69°C, which includes 22°C C adder, exposed to direct sunlight, mounted > 0.5 inches above rooftop, ≤ 6 current carrying conductors (3 circuits) in a circular raceway. Otherwise use Comprehensive Standard Plan.
### Table 3: PV Array Configuration Summary

<table>
<thead>
<tr>
<th>Number of Microinverters or ACMs [Step 1]</th>
<th>Branch 1</th>
<th>Branch 2</th>
<th>Branch 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Conductor Size [Table 2] (AWG)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selected Branch and Inverter Output OCPD [Table 2]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 5. Solar Load Center (if used)

5.1 Solar Load Center is to have a bus bar rating not less than 100 Amps. Otherwise use Comprehensive Standard Plan.

5.2 Circuit Power see [STEP 1] = __________ Watts

5.3 Circuit Current = (Circuit Power) / (AC voltage) = __________ Amps

### Table 4: Solar Load Center and Total Inverter Output OCPD and Conductor Size**

<table>
<thead>
<tr>
<th>Circuit Current (Amps)</th>
<th>Circuit Power (Watts)</th>
<th>OCPD (Amps)</th>
<th>Minimum Conductor Size (AWG)</th>
<th>Minimum Metal Conduit Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>5760</td>
<td>30</td>
<td>10</td>
<td>3/4&quot;</td>
</tr>
<tr>
<td>28</td>
<td>6720</td>
<td>35</td>
<td>8</td>
<td>3/4&quot;</td>
</tr>
<tr>
<td>32</td>
<td>7680</td>
<td>40</td>
<td>8</td>
<td>3/4&quot;</td>
</tr>
<tr>
<td>36</td>
<td>8640</td>
<td>45</td>
<td>8</td>
<td>3/4&quot;</td>
</tr>
<tr>
<td>40</td>
<td>9600</td>
<td>50</td>
<td>8</td>
<td>3/4&quot;</td>
</tr>
<tr>
<td>41.6</td>
<td>≤ 10000</td>
<td>60</td>
<td>6</td>
<td>3/4&quot;</td>
</tr>
</tbody>
</table>

**CEC 690.8 and 210.19 (A)(1) factored in Table 4, conductors are copper, insulation must be 90° C wet-rated. Table 4 values are based on maximum ambient temperature of 47° C (no rooftop temperature adder in this calculation), ≤ 3 current carrying conductors in a circular raceway. Otherwise use Comprehensive Standard Plan.

### 6. Point of Connection to Utility:

6.1 Load Side Connection only! Otherwise use the Comprehensive Standard Plan.

6.2 Is the PV OCPD positioned at the opposite end from input feeder location or main OCPD location?

☐ Yes  ☐ No (If No, then use 100% row in Table 5)

6.3 Per 705.12(D)(2): (Combined inverter output OCPD size + Main OCPD size) ≤ [bus bar size × (100% or 120%)]

### Table 5: Maximum Combined Inverter Output Circuit OCPD

<table>
<thead>
<tr>
<th>Bus Bar Size (Amps)</th>
<th>100</th>
<th>125</th>
<th>125</th>
<th>200</th>
<th>200</th>
<th>200</th>
<th>225</th>
<th>225</th>
<th>225</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main OCPD (Amps)</td>
<td>100</td>
<td>100</td>
<td>125</td>
<td>150</td>
<td>175</td>
<td>200</td>
<td>175</td>
<td>200</td>
<td>225</td>
</tr>
<tr>
<td>Maximum Combined Inverter OCPD with 120% of bus bar rating (Amps)</td>
<td>20</td>
<td>50</td>
<td>25</td>
<td>60'</td>
<td>60'</td>
<td>40</td>
<td>60'</td>
<td>60'</td>
<td>45</td>
</tr>
<tr>
<td>Maximum Combined Inverter OCPD with 100% of bus bar rating (Amps)</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>50</td>
<td>25</td>
<td>0</td>
<td>50</td>
<td>25</td>
<td>0</td>
</tr>
</tbody>
</table>

†This plan limits the maximum system size to less than 10 kW, therefore the OCPD size is limited to 60 A. Reduction of Main Breaker is not permitted with this plan.
7. Grounding and Bonding

Check one of the boxes for whether system is grounded or ungrounded:  [ ] Grounded  [ ] Ungrounded

For Microinverters with a grounded DC input, systems must follow the requirements of GEC (CEC 690.47) and EGC (CEC 690.43).

For ACM systems and Microinverters with ungrounded a DC input follow the EGC requirements of (CEC 690.43).

8. Markings

Informational note: ANSI Z535.4 provides guidelines for the design of safety signs and labels for application to products. A phenolic plaque with contrasting colors between the text and background would meet the intent of the code for permanency. No type size is specified, but 20 point (3/8") should be considered the minimum.

NOTE: CEC 705.10 requires a permanent plaque or directory denoting all electric power sources on or in the premises.
Solar PV Standard Plan — Simplified
Central/String Inverter Systems for One- and Two-Family Dwellings

9. Single-Inverter Line Diagram

Equipment Schedule

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION: (Provide model # if provided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solar PV Module or ACM:</td>
</tr>
<tr>
<td>2</td>
<td>Microinverter (if not ACM):</td>
</tr>
<tr>
<td>3</td>
<td>Junction Box(es):</td>
</tr>
<tr>
<td>4</td>
<td>Solar Load Center, Yes / No:</td>
</tr>
<tr>
<td>5</td>
<td>Performance Meter Yes / No:</td>
</tr>
<tr>
<td>6</td>
<td>*Utility External Disconnect Switch Yes / No:</td>
</tr>
<tr>
<td>7</td>
<td>Main Electrical Service Panel</td>
</tr>
</tbody>
</table>

Single-Line Diagram for Microinverters or ACMs

Check a box for dc system grounding: ☐ Grounded, ☐ Ungrounded
For ungrounded dc power systems, EGC is required
For grounded dc power systems, GEC & EGC are required
Refer to CEC 250.120 for EGC installation & Table 250.122 for sizing

* Consult with your local AHJ and/or Utility

Conductor, Cable and Conduit Schedule

<table>
<thead>
<tr>
<th>TAG</th>
<th>Description and Conductor Type: (Table 3)</th>
<th>Conductor Size</th>
<th>Number of Conductors</th>
<th>Conduit/Conductor/Cable Type</th>
<th>Conduit Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Current-Carrying Conductors: (for each branch circuit)</td>
<td>EGC; GEC (when required):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current-Carrying Conductors:</td>
<td>EGC; GEC (when required):</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STRUCTURAL CRITERIA FOR RESIDENTIAL FLUSH-MOUNTED SOLAR ARRAYS

1. ROOF CHECKS

A. Visual Review/Contractor’s Site Audit of Existing Conditions:
   1) Is the roof a single roof without a reroof overlay? □ Y □ N
   2) Does the roof structure appear structurally sound, without signs of alterations or significant structural deterioration or sagging, as illustrated in Figure 1? □ Y □ N

B. Roof Structure Data:
   1) Measured roof slope (e.g. 6:12):
      _______ :12
   2) Measured rafter spacing (center-to-center):
      _____ inch
   3) Type of roof framing (rafter or manufactured truss):
      □ Rafter □ Truss

2. SOLAR ARRAY CHECKS

A. Flush-mounted Solar Array:
   1) Is the plane of the modules (panels) parallel to the plane of the roof? □ Y □ N
   2) Is there a 2" to 10" gap between underside of module and the roof surface? □ Y □ N
   3) Modules do not overhang any roof edges (ridges, hips, gable ends, eaves)? □ Y □ N

B. Do the modules plus support components weigh no more than:
   4 psf for photovoltaic arrays or 5 psf for solar thermal arrays? □ Y □ N

C. Does the array cover no more than half of the total roof area (all roof planes)? □ Y □ N

D. Are solar support component manufacturer’s project-specific completed worksheets, tables with relevant cells circled, or web-based calculator results attached? □ Y □ N

E. Is a roof plan of the module and anchor layout attached? (see Figure 2) □ Y □ N

F. Downward Load Check (Anchor Layout Check):
   1) Proposed anchor horizontal spacing (see Figure 2): _______" ft-in
   2) Horizontal anchor spacing per Table 1: _______" ft-in
   3) Is proposed anchor horizontal spacing equal to or less than Table 1 spacing? □ Y □ N

G. Wind Uplift Check (Anchor Fastener Check):
   1) Anchor fastener data (see Figure 3):
      a. Diameter of lag screw, hanger bolt or self-drilling screw: _______ inch
      b. Embedment depth of rafter: _______
      c. Number of screws per anchor (typically one):
      d. Are 5/16" diameter lag screws with 2.5" embedment into the rafter used, OR does the anchor fastener meet the manufacturer’s guidelines? □ Y □ N

3. SUMMARY

☐ A. All items above are checked YES. No additional calculations are required.
☐ B. One or more items are checked NO. Attach project-specific drawings and calculations stamped and signed by a California-licensed civil or structural engineer.

Job Address: ________________________________________________  Permit #: ________________________________
Contractor/Installer: __________________________________________ License # & Class: _______________________
Signature: ___________________________________________ Date: ___________  Phone #: _______________________

Optional Additional Rafter Span Check Criteria
[At option of CBO, insert rows (4) to (7) below into table above after row 1.B.(3)]

1. ROOF CHECKS

B. Roof Structure Data:
   4) Measured rafter size (e.g. 13/4 x 33/4, not 2x4):
      _______ x _______ inch
   5) Measured rafter horizontal span (see Figure 4):
      _______" ft-in
   6) Horizontal rafter span per Table 2:
      _______" ft-in
   7) Is measured horizontal rafter span less than Table 2 span? □ Y □ N □ Truss
<table>
<thead>
<tr>
<th>Roof Slope</th>
<th>Rafters (4 psf max)</th>
<th>Rafters (5 psf max)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16&quot; o.c.</td>
<td>24&quot; o.c.</td>
</tr>
<tr>
<td>Flat to 6:12</td>
<td>0° to 26°</td>
<td>5' - 4&quot;</td>
</tr>
<tr>
<td>7:12 to 12:12</td>
<td>27° to 45°</td>
<td>1' - 4&quot;</td>
</tr>
<tr>
<td>13:12 to 24:12</td>
<td>46° to 63°</td>
<td>1' - 4&quot;</td>
</tr>
</tbody>
</table>

Solar support component manufacturer’s guidelines may be relied upon to ensure the array above the roof is properly designed, but manufacturer’s guidelines typically do NOT check to ensure that the roof itself can support the concentrated loads from the solar array. Table 1 assumes that the roof complied with the building code in effect at the time of construction, and places limits on anchor horizontal spacing to ensure that a roof structure is not overloaded under either downward loads or wind uplift loads. Note 4 below lists the basic assumptions upon which this table is based.

Table 1 Notes:

1. Anchors are also known as “stand-offs,” “feet,” “mounts” or “points of attachment.” Horizontal anchor spacing is also known as “cross-slope” or “east-west” anchor spacing (see Figure 2).
2. If anchors are staggered from row-to-row going up the roof, the anchor spacing may be twice that shown above, but no greater than 6’-0”.
3. For manufactured plated wood trusses at slopes of flat to 6:12, the horizontal anchor spacing shall not exceed 4’-0” and anchors in adjacent rows shall be staggered.
4. This table is based on the following assumptions:
   - The roof structure conformed to building code requirements at the time it was built.
   - The attached list of criteria is met.
   - Mean roof height is not greater than 40 feet.
   - Roof sheathing is at least 7/16” thick oriented strand board or plywood. 1x skip sheathing is acceptable.
   - If the dwelling is in Wind Exposure B (typical urban, suburban or wooded areas farther than 500 yards from large open fields), no more than one of the following conditions apply:
     - The dwelling is located in a Special Wind Region with design wind speed between 115 and 130 mph per ASCE 7-10.
     - The dwelling is located on the top half of a tall hill, provided average slope is less than 15%.
   - If the dwelling is in Wind Exposure C (within 500 yards of large open fields or grasslands), all of the following conditions apply:
     - Design wind speed is 110 mph or less (not in a Special Wind Region).
     - The dwelling is not located on the top half of a tall hill.
   - The solar array displaces roof live loads (temporary construction loads) that the roof was originally designed to carry.
   - The Structural Technical Appendix provides additional information about analysis assumptions.
<table>
<thead>
<tr>
<th>Assumed Vintage</th>
<th>Nominal Size</th>
<th>Actual Size</th>
<th>Non-Tile Roof²</th>
<th>Tile Roof³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rafter Spacing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16” o.c.</td>
<td>24” o.c.</td>
</tr>
<tr>
<td>Post-1960</td>
<td>2x4</td>
<td>15¼”x3½”</td>
<td>9’-10”</td>
<td>8’-0”</td>
</tr>
<tr>
<td></td>
<td>2x6</td>
<td>1½”x5¼”</td>
<td>14’-4”</td>
<td>11’-9”</td>
</tr>
<tr>
<td></td>
<td>2x8</td>
<td>1¼”x7¾”</td>
<td>18’-2”</td>
<td>14’-10”</td>
</tr>
<tr>
<td>Pre-1960</td>
<td>2x4</td>
<td>1¼”x3¾”</td>
<td>11’-3”</td>
<td>9’-9”</td>
</tr>
<tr>
<td></td>
<td>2x6</td>
<td>1¼”x5¾”</td>
<td>17’-0”</td>
<td>14’-0”</td>
</tr>
<tr>
<td></td>
<td>2x8</td>
<td>1¾”x7¾”</td>
<td>22’-3”</td>
<td>18’-0”</td>
</tr>
</tbody>
</table>

Beyond a visual review by the contractor checking for unusual sagging or deterioration, some CBOs may want additional assurance that the roof structure complies with structural building code requirements. Table 2 is an optional table some CBOs may elect to use to provide additional assurance by requiring a check of existing roof rafter spans, and supports optional criteria 1.B.5 and 1.B.6. For post-1960 construction, these span tables match the rafter span tables found in the 2013 California Building and Residential codes. For pre-1960 construction, the rafter span tables are based on structural calculations with lumber sizes and wood species and grade appropriate for older construction. Note 5 below lists the basic assumptions upon which this table is based.

Table 2 Notes:

1. See Figure 4 for definition of roof rafter maximum horizontal span.
2. “Non-tile Roof” = asphalt shingle, wood shingle and wood shake, with an assumed roof assembly weight of 10 psf.
3. “Tile Roof” = clay tile or cement tile, with an assumed roof assembly weight of 20 psf.
4. Unaltered manufactured plated-wood trusses may be assumed to be code compliant and meet intent of Table 2.
5. This table is based on the following assumptions:
   - Span/deflection ratio is equal to or greater than 180.
   - For post-1960 construction, wood species and grade is Douglas Fir-Larch No. 2.
   - For pre-1960 construction, wood species and grade is Douglas Fir-Larch No. 1.
   - Other wood species and/or grade are also acceptable if allowable bending stress is equal or greater to that listed.
Figure 1. Roof Visual Structural Review (Contractor's Site Audit) of Existing Conditions.

The site auditor should verify the following.
1. No visually apparent disallowed rafter holes, notches and truss modifications as shown above.
2. No visually apparent structural decay or unrepaid fire damage.
3. Roof sag, measured in inches, is not more than the rafter or ridge beam length in feet divided by 20.

Rafters that fail the above criteria should not be used to support solar arrays unless they are first strengthened.

Figure 2. Sample Solar Panel Array and Anchor Layout Diagram (Roof Plan).
Figure 3. Typical Anchor with Lag Screw Attachment.

Figure 4. Definition of Rafter Horizontal Span.